Representación Isométrica de la circunferencia

Partiendo de las vistas de una pieza (alzado, planta y perfil), hasta ahora hemos creado varias perspectivas isométricas de piezas construidas con caras paralelas y perpendiculares a los planos de proyección y otra formada con planos inclinados.

Nos falta ver la perspectiva de una pieza con planos curvos, pero antes de ver la representación isométrica de este tipo de piezas, veremos el comportamiento de la circunferencia en la perspectiva isométrica.

La circunferencia en perspectiva isométrica

Partimos de un ejemplo creado con un cubo con tres circunferencias en cada una de sus caras.

Como el cubo está en perspectiva isométrica, las circunferencias pasan a ser (visualmente) elipses, elipses isométricas.

Estas elipses se pueden dibujar utilizando plantillas del tipo de la imagen.

Pero hoy aprenderemos a hacer la perspectiva isométrica de la circunferencia, mediante trazados de dibujo.

Para simplificar esta operación, en vez de la elipse isométrica decidimos realizar un óvalo (óvalo isométrico). El óvalo isométrico es la aproximación a la elipse isométrica. Pero antes, sepamos lo que es un óvalo:

ÓvaloÓvalo. Arcos

Es una figura geométrica creada mediante una curva cerrada y plana, compuesta por cuatro arcos de circunferencia, iguales dos a dos. es decir, dos arcos A y otros dos arcos B.

Tiene dos ejes de simetría perpendiculares entre sí y se denominan como eje mayor (en el dibujo: eje horizontal) y eje menor (en el dibujo: eje vertical).

Operaciones

Para realizar un óvalo (isométrico) tendremos que seguir las siguientes operaciones:

  • Trazamos la diagonal menor (eje mejor del óvalo), obteniendo los puntos A y B, y pinchando con el compás en el punto A, y con una abertura del compás de A1, trazamos un arco desde el punto 1 al punto 2.

  • Hacemos lo mismo desde el punto B, trazamos un arco que empiece en el punto 3 hasta el punto 4.
  • Para los otros dos arcos del ovalo, primeramente trazamos la diagonal mayor (eje mayor del óvalo).

Unimos el punto A con los puntos 1 y 2. Y de la misma forma, desde el punto B trazamos dos líneas con 3 y 4.

  • Estas líneas cortan a diagonal mayor en los puntos C y D, que son los centros de los dos último arcos.
  • Haciendo centro en el punto C y con una abertura del compás de C2, trazamos un arco desde el punto 2 al punto 3.
  • De la misma forma, se traza el arco entre 1 y 4.
  • El óvalo isométrico queda trazado.

Para realizar este óvalo en el resto de las caras, se procederá de la misma forma.

Vídeo de repaso

Un comentario en “Representación Isométrica de la circunferencia

Comentario

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Salir /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Salir /  Cambiar )

Conectando a %s